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Abstract.  Hypersonic re-entry flows span a wide range of length scales where regions of both rarefied and continuum 

flow exist. Traditional computational fluid dynamics (CFD) techniques do not provide an accurate solution for the rarefied 

regions of such ‘mixed’ flow fields. Although direct simulation Monte Carlo (DSMC) can be used to accurately capture 

both the continuum and rarefied features of ‘mixed’ flow fields, they are computationally expensive when employed to 

simulate the low Knudsen number continuum regimes. Thus, a hybrid framework for seamlessly combining the two 

methodologies, CFD and DSMC, continues to be a topic of significant research effort.  Ensuring consistency in the reaction 

kinetics and transport models employed within CFD and DSMC is a crucial requirement for obtaining a reliable solution 

from a hybrid framework for combined continuum/rarefied high speed flows.  This paper represents one of the first studies 

to utilize the calibrated transport parameters developed to ensure consistency between CFD and DSMC solvers.  The new 

variable soft sphere (VSS) parameters are compared to both previous “standard” variable hard sphere (VHS) parameters 

and also to solutions from the CFD transport properties that the new parameters were developed to reproduce. 

INTRODUCTION 

Computational techniques allow for the prediction of forces, moments, and heating experienced by a re-entry 

vehicle all along its trajectory, during the design stage of the vehicle.  For an accurate, yet computationally efficient 

estimate of flow field quantities, the simulation methodology employed must vary along the trajectory depending on 

the degree of rarefaction within the flow field.  Computational fluid dynamics (CFD) solutions based on the Navier-

Stokes (NS) equations provide an accurate description of continuum effects, but a particle-based solution 

methodology, such as direct simulation Monte Carlo (DSMC), is required to capture the non-equilibrium phenomena 

in regions where the NS assumptions break down, such as within the shock, boundary layer and wake region of the 

vehicle.  While DSMC is capable of simulating the continuum regions as well, this can become prohibitively expensive 

computationally.  For these reasons, there have been many attempts over the years to perform hybrid CFD/DSMC 

simulations to provide a single flow field solution1-4. 

Efforts have recently begun to develop a hybrid framework for combined continuum/rarefied high speed flows4-6 

that is coupled in physical space.  The first step is to be able to accurately define locations in the flow field where 

continuum breakdown is occurring, by employing continuum breakdown parameters. These locations serve as 

‘boundaries’ to transition between the CFD and DSMC methodology.  Continuum breakdown parameters that capture 

the contribution of multiple physical mechanisms that can lead to breakdown have been formulated for chemically 

reacting flows6. Thus, based on the value of these breakdown parameters with respect to a breakdown threshold, 

boundaries for CFD/DSMC transition are identified.  Once a boundary has been defined, an approach for the 
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generation of particles has been developed in which the fluxes of mass, momentum, and energy determined from the 

NS solution are used to prescribe the appropriate velocity distribution function to be used within the DSMC particle 

generation process4. The next challenge is to ensure consistency between CFD and DSMC with respect to transport 

properties and other non-equilibrium phenomena, such as internal energy relaxation and chemical processes A 

systematic approach for calibrating the DSMC collision model parameters to achieve consistency in the transport 

process was therefore developed and has been used to generate best-fit variable hard sphere (VHS) and variable soft 

sphere (VSS) parameter values for air systems5. 

The current paper focuses on the implementation of the calibrated collision model parameters.  Specifically, the 

chemically-frozen flow of an oxygen (2-species) and an air system (5- and 11-species) around a cylinder, as described 

in Ref. 7, at Mach numbers of 10 and 25 are investigated, and flow field and surface parameters are compared between 

the DSMC and CFD solutions.  The MAP DSMC code8 was used for all DSMC simulations. In addition to the 

recommended best-fit VSS parameter values from Ref. 5, multiple additions have been previously implemented to 

more closely match CFD results for this and future comparisons, including the addition of electronic energy levels, 

improvements in the implementation of the Millikan-White vibrational relaxation model, and the inclusion of a 

statistical mechanics-based method of computing reverse reaction rates.  Various parameters are varied in the DSMC 

simulations from previous best practices to what are considered NASA’s new best practices.  The CFD solutions were 

generated using the LAURA code9. 

TRANSPORT PROPERTIES AND MODEL PARAMETERS 

It is important to ensure consistency between computational transport models used in flow solvers when making 

comparisons of flow field solutions, especially when considering a hybrid CFD/DSMC framework.  The treatment of 

the transport properties in CFD and DSMC solvers is decidedly different.  The transport properties in CFD solvers are 

obtained from expressions involving the collision integrals that are stored as curve fits as a function of temperature10, 

and the transport properties are calculated from the collision integrals using either the full Chapman Enskog 

formulation or through mixing rules11.  The transport properties in DSMC simulations, however, are obtained as a 

result of the transport of mass, momentum, and energy during the collision process between the simulated particles.  

The details of the collision process are dictated by the phenomenological collision cross section models used in DSMC.  

These cross sections can then be used to compute the collision integrals expressed in terms of the DSMC collision 

model parameters, thereby providing a consistent means for quantification and comparison of the transport coefficients 

in CFD and DSMC.  The transport coefficients can then be computed in a similar manner for both CFD and DSMC 

using the Chapman-Enskog theory. 

There are several collision models available in DSMC, but the most commonly used models are the variable hard 

sphere (VHS)12 and the variable soft sphere (VSS)13 models, and these are the models under consideration.  In both of 

these models, the particles are approximated as a hard sphere of diameter d which is a function of the relative speed 

of the collision g, 

𝑑 = 𝑑𝑟𝑒𝑓 (
𝑔𝑟𝑒𝑓

𝑔
)

(𝜔−1 2⁄ )

 (1) 

The variables dref and gref are the reference values defined at a particular reference temperature Tref and  is the 

temperature exponent controlling the particle’s diameter with temperature.  In the VHS model, the scattering is 

assumed to be isotropic, but in the VSS model the scattering angle  can be varied, 

𝜒 = 2𝑐𝑜𝑠−1{(𝑏 𝑑⁄ )1 𝛼⁄ } (2) 

where b is the impact parameter and  is referred to as the scattering exponent that introduces anisotropic scattering 

in the center-of-mass frame of reference.  This parameter allows the VSS model to provide consistent results for both 

diffusion and viscous cross section in comparison with the inverse power law potential. 

The collision integrals and the ratio of collision integrals can be expressed5 in terms of the VHS parameters as: 
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where kb is the Boltzmann constant, T is the temperature, mst
* is the reduced mass, and (x) is the gamma function.  

The collision integrals are then expressed in terms of the VSS parameters as: 
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The ratio of collision integrals 𝐵𝑠𝑡|𝑉𝑆𝑆 is the same as that for 𝐵𝑠𝑡|𝑉𝐻𝑆 given in Eq. 5. 

The mixture viscosity from the VHS and VSS models were determined14 from the first-order Chapman-Enskog 

approximation of the mixture viscosity, defined as: 

[𝜇]1 = ∑ 𝑏𝑠

𝑠

 (8) 

where bs is the contribution of each species to the overall mixture viscosity and may be determined by solving the 

following system: 
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where  is the mole fraction of the species, and [𝜇𝑠]1, 𝐴𝑠𝑡, and 𝒟𝑠𝑡 are defined as: 
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The terms 𝜌𝑠
′  and 𝜌𝑡

′ refer to the density of species s and t when pure at the pressure and temperature of the actual gas 

mixture, ms and mt are the masses of species s and t, and n is the number density. 

The mixture translational thermal conductivity was shown to be determined by14: 

[𝐾𝑡𝑟]1 = ∑ 𝑎𝑠

𝑠

 (13) 

where as is the contribution of each species to the overall mixture translational thermal conductivity and may be 

determined by solving the following system: 
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where [𝜆𝑠]1 is defined as: 
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where 𝑐𝑣 is the specific heat at constant volume of species s, and p is the pressure of the gas mixture.   

The rotational, vibrational, and electronic conductivities are determined using Eucken’s formula, as done in Ref. 

14.  The internal thermal conductivities are given by 
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where 𝜌𝑖 is the partial density defined as the product of the mixture density, 𝜌, and the species mass fraction, 𝑌𝑖 

𝜌𝑖 = 𝜌𝑌𝑖  (19) 

The specific heats are calculated from 

𝑐𝑣 =
𝜁𝑘

2𝑚
 (20) 

where 𝜁 is the number of degrees of freedom.  The number of degrees of freedom are well defined for the translational, 

rotational, and vibrational components and are 

𝜁𝑡𝑟𝑎𝑛𝑠 = 3 (21) 

𝜁𝑟𝑜𝑡 = 2 (22) 
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The number of electronic degrees of freedom are not quite so well defined.  We know that18,19 
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where eel is the electronic energy, R is the gas constant, Tel is the electronic temperature, Qel is the electronic partition 

function, 𝑔𝑖 is the degeneracy of level i, Θ𝑖 = 𝜀𝑖 𝑘⁄  is the characteristic temperature of energy level i, and 𝜀𝑖 is the 

energy of energy level i.  Solving for the electronic degrees of freedom, we get 
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where the sum should be taken over all electronic energy levels.  However, the assumption is often made that only the 

first two energy levels are sufficiently active, so the sum is frequently only taken over the first two energy levels.  This 

will be examined later in this work. 

Previous work5 has provided a recommended set of DSMC collision model parameters for both neutral (6-species) 

and ionized (13-species) gas mixtures based on calibrations against ab initio-based collision integral data.  The VHS 

and VSS parameters are input quantities that may be specified for each species, or for each collision pair.  If the 

parameters are specified for each species only, it is referred to as collision-averaged pairing and the parameters for 

the colliding pair are taken as the average values of the two species.  When the parameters are specified for each 

specific collision pair, then it is referred to as collision-specific pairing.  It was shown by Stephani et al.14 that the 

collision-specific pairing provides the most accurate and physically consistent description of the collision processes 

between unlike species.  The recommended set of values for the VSS model parameters, given in Ref. 5, are presented 

in Tables 1-4 for 13-species ionized air.  The suggested values given for 6-species neutral air are not considered here 

for consistency and the extended range of valid temperatures of the 13-species calibration.  The parameters for 13-

species ionized air become more complex due to the charged particle interactions.  The parameters for the neutral-

neutral interactions are listed in Table 1 and neutral-charged interactions in Table 2.  Due to the variation of neutral-



electron collision integrals with respect to temperature, separate temperature ranges must be defined and the VSS 

model parameters are listed for these collisions in Table 3.  Finally, the VSS model parameters controlling the 

interactions between charged particles are given as curve fits as a function of electron number density in Table 4.  The 

reader is encouraged to refer to Ref. 5 for the VHS parameters and the 6-species neutral air parameters. 

 

TABLE 1.  Collision-specific VSS parameters for neutral-neutral interactions for 13-species ionized air. 

dref (Å) N2 O2 NO N O Ar 

N2 4.040 3.604 4.391 4.088 3.222 3.882 

O2  3.896 4.054 3.721 3.734 3.972 

NO   4.218 4.028 3.693 4.049 

N    3.697 3.811 3.963 

O     3.692 4.022 

Ar      4.011 

       

 N2 O2 NO N O Ar 

N2 0.686 0.703 0.756 0.762 0.702 0.703 

O2  0.700 0.718 0.757 0.760 0.719 

NO   0.737 0.788 0.752 0.719 

N    0.790 0.794 0.784 

O     0.803 0.757 

Ar      0.722 

       

 N2 O2 NO N O Ar 

N2 1.424 1.430 1.515 1.585 1.427 1.446 

O2  1.463 1.501 1.567 1.542 1.467 

NO   1.542 1.641 1.555 1.463 

N    1.486 1.545 1.632 

O     1.582 1.570 

Ar      1.470 

 

TABLE 2.  Collision-specific VSS parameters for neutral-charged interactions for 13-species ionized air. 

dref (Å) N2 O2 NO N O Ar 

N2
+ 4.975 4.034 4.100 3.987 3.823 5.384 

O2
+ 3.434 5.245 3.417 3.155 2.990 4.678 

NO+ 3.752 3.714 5.325 3.584 3.382 5.002 

N+ 7.666 3.528 3.595 6.462 7.525 3.581 

O+ 3.477 3.453 3.469 7.092 5.625 3.461 

Ar+ 4.662 4.989 4.639 4.746 4.577 5.522 

       

 N2 O2 NO N O Ar 

N2
+ 0.601 0.660 0.658 0.657 0.660 0.777 

O2
+ 0.699 0.670 0.695 0.682 0.682 0.834 

NO+ 0.676 0.677 0.653 0.668 0.666 0.800 

N+ 1.034 0.682 0.681 0.741 1.064 0.677 

O+ 0.691 0.695 0.688 0.995 0.725 0.685 

Ar+ 0.768 0.803 0.764 0.789 0.795 0.619 

       

 N2 O2 NO N O Ar 

N2
+ 0.254 1.284 1.269 1.256 1.286 1.352 

O2
+ 1.378 0.157 1.365 1.339 1.366 1.490 

NO+ 1.343 1.343 0.209 1.313 1.336 1.426 

N+ 1.862 1.344 1.329 0.158 1.798 1.331 

O+ 1.365 1.359 1.352 1.585 0.164 1.353 

Ar+ 1.406 1.442 1.397 1.403 1.438 0.162 

 

  



TABLE 3.  Collision-specific VSS parameters for neutral-electron interactions for 13-species ionized air. 

 Temperature range (K) dref (Å)   

N2 5000-7400 1.777 0.446 1.011 

 7400-20000 2.867 0.677 1.056 

O2 5000-10300 1.360 0.455 1.142 

 10300-20000 1.632 0.534 1.285 

NO 5000-20000 3.790 0.834 1.250 

N 5000-20000 3.863 0.842 1.983 

O 5000-20000 0.888 0.327 1.838 

Ar 5000-20000 0.193 -0.434 1.801 

 

TABLE 4.  Curve-fit coefficients for VSS collision-specific parameters as a function of electron number density (ne) for charge-

charge interactions for 13-species ionized air. 

 Attractive Potential  Repulsive Potential 

VSS parameter A  C    C 

dref (Å) 3.614x101 -3.294x103 7.497x104  4.794x101 -4.121x103 8.879x104 

 -3.636x10-3 2.228x10-1 -1.102x100  -4.298x10-3 2.573x10-1 -1.543x100 

 3.846x10-3 -1.573x100 6.279x101  3.489x10-2 -3.659x100 9.661x101 

(𝑑𝑟𝑒𝑓 , 𝜔, 𝛼) = 𝐴 ∗ 𝑙𝑜𝑔2(𝑛𝑒) + 𝐵 ∗ 𝑙𝑜𝑔(𝑛𝑒) + 𝐶 

APPLICATION TO HYPERSONIC BLUNT BODY FLOW 

The two-dimensional, 12-inch diameter cylinder used by Lofthouse et al.7 is used as the geometry in the current 

study.  The test case is a two-dimensional hypersonic flow of an oxygen system and an air system over a range of 

Mach numbers set such that the nominal free stream Mach numbers are 10 and 25 for a standard air composition 

(actual free stream Mach numbers will vary due to changes in gas composition).  A nominal Knudsen number based 

on the cylinder diameter of 0.0005 was chosen to reduce any rarefaction effects, so a constant value of 𝑛∞=1.00x1022 

m-3 was used for the free stream number density.  The focus of the current study are the transport properties; therefore, 

the gas is assumed to be chemically frozen at post-shock equilibrium concentrations (as computed by the CEA code15) 

and thermal equilibrium is assumed for the CFD solutions and encouraged in the DSMC solutions by setting the 

internal energy collision numbers to a value of one (relaxation is performed for each particle at each collision).  The 

free stream conditions are listed in Table 5.  The species concentrations are listed in Tables 6 and 7 for the oxygen 

and air systems, respectively.  The VSS results are obtained using the parameters listed in the above section.  The 

VHS values are obtained using the standard high temperature air values distributed with the DAC software16,17.  Flow 

field and surface distributions are discussed in the following sections. 

TABLE 5.  Free stream and surface conditions. 

Mach 

Number 
𝑢∞ (m/s) 𝑇∞ (K) 𝑇𝑤𝑎𝑙𝑙 (K) 

Wall Boundary 

Condition 

10 2836 200 500 Non-catalytic 

25 7090 200 1500 Non-catalytic 

 

TABLE 6.  Oxygen system compositions (mole fractions). 

 Mach 10 Mach 25 

O2 8.3736x10-1 0.0 

O 1.6264x10-1 1.0 

 

TABLE 7.  Air system compositions (mole fractions). 

 Mach 10 Mach 25 

O2 1.5617x10-1 7.9000x10-4 

N2 7.8049x10-1 2.2447x10-1 

O 1.1267x10-1 2.8924x10-1 

N 1.0000x10-5 4.8441x10-1 

NO 2.2660x10-2 1.0900x10-3 

 



 

 

FIGURE 1.  Stagnation streamline distribution of total temperature. 

Flow Field Structure and Temperature 

The distributions of total temperature along the stagnation stream line are shown in Figure 1 for all of the conditions 

considered.  The DSMC shock standoff distances and temperature profiles compare well with the CFD predictions for 

both the VHS and VSS model parameters. 

 

 

 
(a) Mach 10 oxygen 

 

 
(b) Mach 25 oxygen 

 
(c) Mach 10 air 

 

 
(d) Mach 25 air 



FIGURE 2.  Surface heating distributions. 

Surface Heating 

The surface heating distributions over the surface of the cylinder are presented in Figure 2.  For all conditions, the 

VSS model parameter values more closely match those predicted by the CFD solutions.  The VHS results under-

predict the heating for the Mach 10 cases and then over-predict the heating for the Mach 25 cases. 

 

 

 

 

 
(a) Mach 10 oxygen 

 

 
(b) Mach 25 oxygen 

 
(c) Mach 10 air 

 

 
(d) Mach 25 air 



 

FIGURE 3.  Surface shear stress distributions. 

Surface Shear Stress 

The surface shear stress distributions over the surface of the cylinder are presented in Figure 3.  For all conditions, 

the VSS model parameter values more closely match those predicted by the CFD solutions.   

 

 

 

 

 

 
(a) Mach 10 oxygen 

 

 
(b) Mach 25 oxygen 

 
(c) Mach 10 air 

 

 
(d) Mach 25 air 



 

FIGURE 4.  Stagnation streamline distribution of mixture viscosity. 

Mixture Viscosity 

The distributions of mixture viscosity along the stagnation stream line are shown in Figure 4 for all of the 

conditions considered.  When the values of mixture viscosity are compared to the CFD prediction, the VSS model 

parameter values reproduce the CFD predictions, as expected, while the VHS model parameter values over-predict 

the mixture viscosity. 

 

 

 

 
(a) Mach 10 oxygen 

 

 
(b) Mach 25 oxygen 

 
(c) Mach 10 air 

 

 
(d) Mach 25 air 



 

FIGURE 5.  Stagnation streamline distribution of mixture thermal conductivity. 

Mixture Thermal Conductivity 

The distributions of mixture thermal conductivity along the stagnation stream line are shown in Figure 5 for all of 

the conditions considered.  When thermal conductivity is examined, neither the VHS nor the VSS models accurately 

reproduced the expected values represented by the CFD predictions for any of the conditions considered using the full 

description of mixture thermal conductivity defined above.  This is because of the assumptions used in calculating the 

CFD mixture thermal conductivity.  As described in Ref. 20, it is assumed that the vibrational component of thermal 

conductivity is equal to the rotational component in LAURA.  Further, it is not discussed how the electronic 

 
(a) Mach 10 oxygen 

 

 
(b) Mach 25 oxygen 

 
(c) Mach 10 air 

 

 
(d) Mach 25 air 



component is calculated.  Therefore, two extra lines are added to the results in Figure 5.  The DSMC (VSS)* and 

DSMC (VSS)** lines are defined as 

𝐾𝑡𝑜𝑡𝑎𝑙
∗ = 𝐾𝑡𝑟 + 2𝐾𝑟𝑜𝑡 + 𝐾𝑒𝑙

′  (27) 

  

𝐾𝑡𝑜𝑡𝑎𝑙
∗∗ = 𝐾𝑡𝑟 + 2𝐾𝑟𝑜𝑡 (28) 

where 𝐾𝑒𝑙
′  is the electronic thermal conductivity using the sum over only the first two energy levels from Eq. (26).  

The only difference between Eq. (27) and (28) is the addition of the electronic energy component in Eq. (27).  If we 

examine the Mach 10 oxygen and air conditions, it is clear that the addition of the electronic energy component makes 

little difference in the results because the temperature is not high enough to have a significant population in the first 

excited energy level.  For these cases, the modified thermal conductivity described by Eq. (27) matches the predicted 

CFD values reasonably well. 

When considering the Mach 25 oxygen and air conditions, the modified values of thermal conductivity do match 

the predicted CFD values, but Eq. (28) matches for the oxygen condition and Eq. (27) matches for the air condition.  

This is because, for the oxygen case, the flow is entirely atomic oxygen and although atomic oxygen has electronic 

energy, the CFD code does not consider it because of the assumption of the two-temperature model.  Therefore, we 

are able to reproduce the mixture thermal conductivities for all four conditions when taking into account the 

assumptions that are made by the CFD code. 

CONCLUSION 

Previously calibrated VSS collision model parameters have been successfully implemented in the MAP DSMC 

code and have been compared to one of the CFD codes (LAURA) from which the collision integrals were used to 

perform the calibrations.  In general, the resultant shock standoff distance, total temperature distribution, and mixture 

viscosity along the stagnation streamline of the 2D cylinder compared very favorably for both Mach numbers and gas 

compositions presented herein.  However, discrepancies were found when the mixture thermal conductivity was 

examined.  In order to resolve these discrepancies, the assumptions that were made in the CFD code were applied to 

the post-processing of the DSMC results.  When the assumptions of summing over only the first two electronic energy 

levels and not including the electronic energy component for atomic species were applied, the DSMC VSS results 

were able to reproduce the predicted CFD values. 

The results of the calibrated VSS parameters were also compared to previously recommended VHS collision model 

parameters.  It was found that, while both models were equally good at predicting the shock standoff distance and the 

total temperature distribution, the VHS model parameters could not predict the mixture viscosity correctly and did not 

predict the surface quantities of interest as well as the VSS model parameters. 
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